miércoles, 30 de julio de 2008

LA QUIMICA EN LA VIDA DIARIA


La Química y la Vida



La Química del Hogar y la Vida Diaria

La industria química, fabricando productos de limpieza, productos para el aseo personal y el cuidado de los niños, elaborando materiales para la construcción de aparatos electrodomésticos y permitiendo la óptima conservación de los alimentos, ha contribuido de manera decisiva a facilitar las tareas del hogar. En las economías primitivas, se dedicaban 16 horas al día a las necesidades básicas, y en el mundo moderno, tan sólo dos, debido a los detergentes, la ropa fácil de planchar y limpiar, o los alimentos congelados, por ejemplo. Empezando por la cocina, en ella encontramos utensilios recubiertos de plástico a los que no se adhieren los alimentos, recipientes y muebles del mismo material, placas cerámicas, films transparentes para envolver, bandejas antideslizantes, latas de conserva protegidas interiormente y alimentos preparados contra el efecto de hongos y bacterias.
Si pasamos a la sala de estar allí se encuentran la televisión, el vídeo, un reproductor de sonido, discos compactos, y cintas magnéticas…todos ellos constituidos por materiales químicos, desde el recubrimiento interior de las pantallas de televisión, hasta los soportes magnéticos, pasando por los discos compactos. Y en todas las habitaciones hay elementos derivados de productos químicos: alfombras, tapicerías, telas, relleno de almohadas, jabón, perfumes, pintura, adhesivos, juguetes, detergentes, insecticidas, cosméticos… Mire a su alrededor y busque algún objeto para cuya fabricación no haya jugado la química un papel importante…y este ejercicio lo puede repetir en el avión, el automóvil o en la calle. La química nos viste para cada ocasión: ir al campo, bañarnos en el mar, practicar algún deporte, escalar una montaña o ir a una fiesta. Las fibras naturales son difíciles de modificar y se producen de una manera relativamente ineficiente. Las fibras sintéticas se pueden alterar para que respondan a necesidades específicas y se producen en gran cantidad fácilmente. Además, las fibras naturales no son tan naturales como parecen. ¿Ha visto usted la lana tal como la producen las ovejas, o cómo queda el algodón que, al no tener protección química, es atacado por una plaga de escarabajos? La química también nos ayuda a obtener mayores rendimientos en el empleo de los alimentos, permitiendo su conservación y su transporte en cámaras frigoríficas, preservando sus propiedades y alargando su vida, tanto en los mataderos, como en los grandes almacenes, las tiendas y, por último, en los refrigeradores y neveras domésticas. Todos estos aparatos funcionan con gases criogénicos "limpios" y están aislados térmicamente con espumas sintéticas. Por último debe citarse la enorme importancia que tienen los envases, fabricados con productos químicos, para la conservación de los alimentos. Estos recipientes de aspecto inocente son admirables piezas tecnológicas. Deben ser ligeros y resistentes, y los hay compuestos por numerosas capas de film diferentes, cada una con funciones y propiedades específicas. La permeabilidad selectiva a los gases como el anhídrido carbónico y el oxígeno, así como a la humedad y a la luz, de los materiales basados en polímeros ha servido para desarrollar embalajes con una atmósfera interior modificada. Si las propiedades de barrera se seleccionan adecuadamente, un material de embalaje puede mantener una atmósfera modificada dentro del recipiente, alargando la llamada "vida en el estante" del producto. Los productos deshidratados deben ser protegidos de la humedad durante su almacenamiento. Los alimentos grasos deben ser protegidos del aire para reducir su oxidación. La fruta fresca, por el contrario, debe respirar, y es necesario que en recipiente circulen los gases. Para todas estas necesidades, a veces contradictorias, la química tiene los materiales necesarios. Con ella se fabrican también "envases inteligentes" cuando se requieren características especiales. Así, hay envases, por ejemplo, que se fabrican con productos que absorben el oxígeno y lo retiran de su interior, y otros que están compuestos por films sensibles a la temperatura y presentan cambios abruptos a la permeabilidad de los gases por encima o debajo de ciertas temperaturas, como consecuencia del cambio de una estructura cristalina a una amorfa debido a la fluctuación térmica. Es importante también resaltar la importancia de los plásticos en la reducción de residuos de envases. Debido a su resistencia y a su ligereza permiten desarrollar la estrategia principal, que consiste en la disminución en origen, prestándose por otro lado al reciclado y reutilización, mostrando así su ecoeficiencia.

La Química y la Salud

Medicinas, vacunas y productos sanitarios La química contribuye de forma esencial a la mejora de la alimentación y la higiene, conjuntamente con otras ciencias y tecnologías, y es el protagonista esencial, mediante los productos farmacéuticos, en la lucha contra las enfermedades y en la mejora de la calidad de vida hasta edades muy avanzadas. Klaus Heilman, director del Instituto de la Salud de Munich, estableció la correlación entre el descubrimiento y la aplicación generalizada de medicamentos, y la mejora de la calidad de vida y su prolongación, calculando que 15 años de nuestras vidas (20%), se los debemos a los medicamentos. A esta revolución en la mejora de la salud humana han contribuido, entre otros, dos grupos de medicamentos: los antibióticos, que han revolucionado la cura de las infecciones causadas por microorganismos, y las vacunas, que han estado en primera línea de defensa contra las epidemias, enfermedades contagiosas y patologías previsibles. El químico y biólogo francés Louis Pasteur demostró la teoría de los gérmenes como causantes de enfermedades (patógenos), dando base científica a las experiencias del médico inglés Edward Jenner, inventor de la primera vacuna. El químico alemán Gerhard Domagk obtuvo el Premio Nobel en 1939 por el descubrimiento de la primera molécula quimioterapéutica activa contra gérmenes: la sulfamida. Este producto y sus sucesores, salvaron un incontable número de vidas en las décadas siguientes. Posteriormente, el británico Alexander Fleming, también Premio Nobel en 1945, descubrió la acción antiinfecciosa de la secreción de un hongo, que recibió el nombre de Penicilina, dando lugar al nacimiento de los antibióticos.
Las medicinas y las vacunas han erradicado prácticamente grandes patologías como la poliomelitis, la viruela o la tuberculosis. Por su parte, los antisépticos y los antibióticos ayudan - entre otras cosas - a salvar la vida de las madres en los partos, habiendo descendido la mortalidad, en los países industrializados, de 300 madres cada 100.000 nacimientos, a menos de 20 en la actualidad. También el cólera ha sido erradicado en gran parte del mundo mediante el tratamiento del agua, de la que Pasteur decía: "Nos bebemos el 80% de las enfermedades". Actualmente, la industria química fabrica el cloro que potabiliza el 98% del agua que consumen los seres humanos. Pero la química moderna no sólo ayuda a salvar millones de vidas gracias a los medicamentos, sino también mediante otros productos que rompen la cadena de transmisión de terribles enfermedades como son los insecticidas, los desinfectantes y otros protectores de diversa índole. Por ejemplo, la lucha contra la malaria y el mosquito que la transmite es absolutamente esencial si consideramos que más de 100 millones de personas (la población conjunta de España y Francia), resultan infectadas anualmente. Casi siempre, las enfermedades vienen acompañadas de muy diferentes clases de sufrimiento, dolores e incapacidades. Las medicinas alivian el dolor y mejoran la calidad de vida, tan sólo en Europa, de:
30 millones de personas que sufren artritis o reumatismo
5 millones de enfermos del corazón
0,5 millones que padecen la enfermedad de Parkinson
de 20 a 30 millones con desórdenes nerviosos
Incontables enfermos de diabetes, epilepsia y asma
Además, las nuevas moléculas químicas hacen posible el transplante de órganos y la farmacia está introduciéndose en el campo de la terapia génica. El Hombre reparado Sin los productos hechos por las compañías químicas, cientos de miles de europeos estarían hoy incapacitados. Los repuestos para las articulaciones y los miembros ultraligeros están fabricados con nuevos materiales con propiedades especiales tales como la bio-compatibilidad. Las válvulas cardiacas, los marcapasos, los riñones artificiales y el hilo de coser de los quirófanos están hechos de productos químicos de alta tecnología y muchos aparatos fabricados con ellos funcionan gracias a la química. Los sordos pueden oír por medio de diminutos aparatos de plástico provistos de pilas, los ciegos pueden ver con córneas artificiales de materiales sintéticos y los cojos pueden andar gracias a prótesis de materiales químicos biocompatibles. Y las reparaciones - las operaciones quirúrgicas - sólo pueden realizarse mediante el concurso de incontables productos químicos como antisépticos, desinfectantes, gases industriales, finos tubos de plástico, bolsas de sangre y para el gota a gota, adhesivos, materias endurentes...y la anestesia, que es una de las invenciones a las que prácticamente todo el mundo está agradecido por experiencia personal, y que ha hecho algo más simpáticos a los dentistas. Además de ello, los hospitales recurren a incontables productos químicos que como el PVC, permiten asegurar las condiciones higiénicas y asépticas de los materiales. Materiales de Protección. La Química nos proporciona una cabeza más dura Para prevenir los accidentes o mitigar los daños, el hombre recurre también a lo que podríamos llamar prótesis externas, como los cascos, guantes de protección, calzado de seguridad, gafas, trajes ignífugos, chalecos antibalas, e incluso trajes espaciales, fabricados todos ellos con materiales químicos ligeros y de altas prestaciones.

La Química y la Alimentación

Si preguntamos a un niño "¿de dónde vienen los alimentos?", probablemente responderá: "de la nevera", o, quizás, "de la tienda". Y si le preguntamos a un adulto la respuesta puede ser "del campo y de las fábricas", sin pensar que "el campo" da poco por sí mismo. Eso que llamamos con cierta ligereza "el campo" son "las tierras cultivables", que constituyen un bien escaso cuya extensión está continuamente amenazada por la desertización y el crecimiento de las zonas urbanas. Y ya que hablamos del campo: una sola planta de acrilonitrilo - que ocupa la extensión de un campo de fútbol - permite producir la misma cantidad de fibras que un "rebaño" de 12 millones de ovejas, que para pastar necesitarían una extensión del tamaño de Bélgica. La fabricación de fibras sintéticas, acrílicas, de poliéster, de nylon, y otras, en centenares de fábricas distribuidas por todo el mundo, permiten disponer de más tierras cultivables que en otro caso tendrían que dedicarse a la cría de ganado lanar o a la plantación de vegetales para la obtención de algodón, lino o sisal, y no habría espacio suficiente en la Tierra para abastecer las necesidades textiles. Los Fertilizantes El área dedicada a la agricultura en el mundo hoy en día (1.400 millones de hectáreas, que es una extensión equivalente a la de Sudamérica) es la misma que en 1950 gracias a la agricultura intensiva y sostenible facilitada por la ayuda de fertilizantes y productos agroquímicos, a pesar de que en ese tiempo la humanidad ha pasado de 2,5 a 6 mil millones de personas. Esto ha evitado la utilización de 26 Millones de Kilómetros cuadrados más de suelo - lo que equivale a la superficie conjunta de los dos países más extensos de la Tierra: Rusia y Canadá - para alimentar a la población actual. La Organización Mundial de la Salud calcula que en el año 2050 la población mundial alcanzará los once mil millones de habitantes. Indudablemente, sin cambios importantes en la productividad, la agricultura no será capaz de producir alimentos suficientes, por lo que la aplicación de avanzadas técnicas químicas es esencial para cubrir las necesidades de la Humanidad. Sin estas técnicas, no sólo no sería posible hacer frente a las necesidades generadas por el crecimiento puramente vegetativo de la población, sino tampoco a los cambios nutricionales que se esperan. Se prevé que la renta per capita alcance una tasa anual de crecimiento del 2,7% hasta el año 2020, siendo el doble la tasa de crecimiento en los países en vías de desarrollo que en los países desarrollados. Este crecimiento de la renta, así como el de las áreas urbanas, provocará, en poco tiempo, un cambio en los hábitos alimenticios, aumentando el consumo de carne, especialmente carne roja, e incrementando consiguientemente la demanda de grano para alimentar al ganado. Esta demanda se duplicará en los países en vías de desarrollo. Dada la escasez de tierras cultivables, sólo se podrá hacer frente a esta situación aumentando los rendimientos agrícolas mediante el empleo de fertilizantes y productos fitosanitarios para la protección de las plantas. Los Fitosanitarios En algunos países del tercer mundo, el trabajo de una tercera parte de los agricultores lo consumen los insectos, roedores, bacterias y hongos. Efectivamente es así, puesto que la tercera parte de las cosechas son destruidas por las pestes y plagas, al no protegerse suficientemente las cosechas y los productos obtenidos mediante el uso de productos fitosanitarios. Si no fuese por estos productos para controlar las malas hierbas, las plagas, las pestes y enfermedades, la tercera parte de los alimentos producidos en el mundo (una barra de pan de cada tres) se perdería. La química moderna está protegiendo y mejorando las cosechas, utilizando diversos productos fitosanitarios: fungicidas, herbicidas e insecticidas selectivos que no son perjudiciales ni para el medio ambiente ni para los pájaros y las abejas, importantes agentes polinizantes. Debido a su mayor eficiencia y selectividad, hoy en día los agricultores sólo necesitan aplicar dosis mínimas de productos químicos por cada hectárea en lugar de las grandes dosis que utilizaban en el pasado. De esta manera no sólo se obtienen mejores y mayores cosechas, sino que los productos llegan a los mercados en mejores condiciones higiénicas. No hace mucho, los "bichos" en los guisantes eran algo común; ahora una sola larva en un paquete de guisantes congelados provoca una visita del inspector de sanidad. El desarrollo de los productos de protección de las cosechas requiere mucha especialización, incluyendo la de los químicos, bioquímicos e ingenieros agrónomos, y un gran esfuerzo de investigación y financiero por parte de las empresas. Sólo una de cada 10.000 sustancias sintetizadas en el laboratorio resulta apta para su aplicación, y en desarrollar y probar cada producto puede tardarse hasta diez años, y requerir inversiones superiores a los 15.000 millones de pesetas. La Salud animal La nutrición del hombre requiere no sólo la obtención de cosechas abundantes y sanas, sino también la protección sanitaria y la alimentación de los animales. Sólo en Europa hay cerca de 280 millones de animales destinados a la alimentación, contando sólo los ganados bovino, porcino y ovino. La química los protege contra las enfermedades y los parásitos y contribuye a su alimentación. Si no se tratara a los animales con fármacos, se perdería un 47% del ganado bovino, un 35% del porcino, un 22% del ovino, y un 20% del aviar.




La Química es la Ciencia del próximo Milenio

El éxito de los productos químicos es crucial, de muchas maneras, para el futuro económico de Europa. Es sin duda uno -y quizás el único- de los sectores innovadores en Europa que va por delante en el mundo. La Química se encuentra en la vanguardia del cambio. Los nuevos usos de los productos químicos crecen diariamente. La revolución industrial de los productos químicos está a punto de transformar los productos y procesos de otras industrias que han permanecido inmutables desde el siglo pasado. Por ejemplo, los cables de acero de alta resistencia están viéndose obligados a dar paso a fibras de polietileno de muy elevado peso molecular, que son mucho más ligeras y no se corroen. Otro ejemplo de innovación es el de la fabricación de motores cerámicos de explosión con pistones de carbono reforzado con fibras de este mismo elemento. En el campo de la electrónica, la tecnología química está jugando un papel cada vez más importante. Un cierto número de compañías líderes europeas se están convirtiendo en grandes productores de arseniuro de galio, la sustancia que sustituirá al silicio en los chips del mañana, y algunas están en primera fila en la producción de fibras ópticas avanzadas y en el uso de materiales acrílicos como núcleos centrales de los cables ópticos. Los investigadores químicos están también en las fronteras de los descubrimientos científicos. Desde luego, esto ocurre en el caso de la biotecnología, pero también sucede en áreas como la física. En efecto, en este campo, los científicos están implicados en la carrera para alcanzar la superconductividad práctica a altas temperaturas, y están trabajando sobre nuevos materiales cerámicos que han sido diseñados para utilizar poca energía - o no utilizarla - y producir importantes efectos magnéticos. Curiosamente hace pocos años, la gente decía que habíamos llegado al final de la senda innovadora, y que no habría más plásticos ni fibras nuevas. Sin embargo, la investigación sostenida se vio recompensada. Aparecieron nuevos polímeros con los que se produjeron materiales avanzados que desafían a materiales tradicionales como el acero y el aluminio. Casi de la noche a la mañana, la industria química se ha convertido en el corazón de una verdadera y profunda revolución industrial y ha pasado de ser una industria de chimeneas a ser una industria de alta tecnología. El Transporte Luciano de Samosata, el Barón de Münchhausen y Julio Verne nos llevaron con su imaginación a la Luna, pero ha sido precisa la imaginación de los químicos para que la ilusión se convirtiese en realidad (combustibles, fibras y materiales especiales, recubrimientos de cerámica, ordenadores, fibra óptica, material transparente, alimentos preparados) Los Aviones El secreto del ahorro de combustible está en la ligereza de peso, conseguida a través de los productos químicos, compuestos que pueden ahorrar hasta un 30 % del peso de la estructura de un avión. Poco a poco, se está acercando la era del avión de plástico. En el Airbus Europeo A320 se emplean resinas sintéticas reforzadas con fibras de carbono, y en el nuevo avión avanzado de pasajeros - Beechcraft "Starship" - se emplean estos materiales en la construcción del cuerpo y de las alas. Y no sólo es el acero lo que se está sustituyendo, sino incluso materiales recientemente desarrollados, como las aleaciones de litio y aluminio. Desde que aparecieron los primeros aviones de reacción, los litros de carburante consumidos por asiento cada 100 Km se han reducido a la mitad. Una disminución de un Kg en el peso de un avión supone un ahorro medio de 120 litros de carburante al año. Por lo que se refiere a la seguridad, los productos químicos son capaces de apagar instantáneamente un eventual incendio de los motores y todos los reactores tienen sistemas automáticos de extinción basados en ellos. Los Automóviles Uno de cada doce puestos de trabajo en Europa tienen relación con el automóvil, lo que es una muestra de la gran importancia económica y social de una máquina que no sería posible sin el auxilio de sofisticados productos químicos. Los combustibles han podido ser utilizados durante muchos años con mayor rendimiento, y por lo tanto con una mayor economía, mezclados con derivados químicos del plomo, hoy sustituidos por otros productos químicos y, si faltase el petróleo, la química podría proporcionar, como en Brasil, metanol de origen vegetal. El uso de los plásticos, más ligeros que los metales, se traduce en más kilómetros por litro de combustible. Del orden de 8 millones de toneladas de plásticos viajan hoy día por las carreteras europeas, sustituyendo el peso correspondiente de metales, principalmente hierro, con una densidad 7 veces mayor. Los plásticos son la mejor manera de dar forma aerodinámica a los vehículos para reducir su coeficiente de penetración y los vehículos se pueden mantener fuera del garaje debido a la pintura que los embellece y protege. Desde que los primeros automóviles aparecieron, la vida de los neumáticos se ha alargado 400 veces, añadiendo seguridad y comodidad a los viajes. Otros productos como los anticongelantes impiden los problemas del invierno, los lubricantes - que son verdaderos productos de alta tecnología, resistentes al calor, al frío y al tremendo batido al que están sometidos - reducen el desgaste de las piezas móviles, y cada fluido de su coche es un producto químico especialmente diseñado para un propósito. La seguridad pasiva del automóvil depende también en gran parte de los productos químicos, como ocurre con las lunas antichoque, las resistentes fibras de los cinturones de seguridad y los sistemas de inflado instantáneo de los "airbags". Pero aún no hemos llegado y ya empieza a vislumbrarse el automóvil del futuro. El desarrollo del moldeo de plásticos de microprecisión está llevando a la ingeniería a una nueva dimensión. Por todas partes, se están desarrollando motores avanzados que emplean cerámica y no precisan de refrigeración. Tampoco están lejanas las baterías fabricadas con films de muy bajo espesor que se pueden curvar para montarlas casi en cualquier sitio. De este modo, los científicos de la industria química están contribuyendo a una revolucionaria transformación de las formas y concepciones tradicionales y la naturaleza de los automóviles. Baste pensar en el futuro del automóvil de propulsión eléctrica o del movido por combustión de hidrógeno, y el empleo de paneles solares. La Informática La informática se basa en los chips de silicio y en los de arseniuro de galio, cuyos circuitos están construidos mediante procesos fotoquímicos. Los soportes magnéticos y los CD-ROM están fabricados con plásticos, y las pantallas están recubiertas internamente por productos sensibles a la luz. También las carcasas, los teclados, el cableado y ese ratón que usted acaricia y que le hace navegar por el ciberespacio, están hechos con polímeros. La Construcción En la construcción se emplean un incalculable número de productos químicos con los fines más variados. La pintura, las cubiertas de los tejados, las tuberías y ahora también las puertas y las ventanas, están hechas de materiales plásticos, como el PVC, produciendo un gran ahorro de madera y ayudando a evitar la deforestación. El "calor de hogar" se mantiene gracias a espumas de materiales aislantes y los graves problemas de corrosión que afectan al hormigón armado han llevado a la introducción de materiales aeroespaciales en la construcción. Ya hace algunos años se empezó a utilizar, en lugar de acero, fibra de vidrio con resinas de poliéster, para reforzar el hormigón en la construcción de puentes de carretera, utilizándose otros aditivos químicos para mejorar sus propiedades, entre las que se encuentra el incremento de su estanqueidad al agua. Sin las materias explosivas sería inconcebible la realización de grandes obras, como presas, túneles o trazados ferroviarios. Tampoco sería posible el trabajo de las minas y la obtención de materiales inertes para la fabricación de ladrillos y cemento, básicos para la construcción de viviendas. Los colorantes y los esmaltes cerámicos dan protección y colorido a las piezas cerámicas empleadas en la construcción y a los aparatos sanitarios. Los aglomerantes permiten la fabricación de productos nuevos con materiales residuales, y los adhesivos y aislantes térmicos y acústicos encuentran aplicación por todas partes. Tanto si la tarea es restaurar, modernizar o construir nuevos edificios, la industria de la construcción se enfrenta continuamente con el problema de preservar y crear ambientes cada vez más acogedores y mejor adaptados a las necesidades del hombre. Sin la contribución de la química esta tarea no podría abordarse.


La Química, la Seguridad y el Medio Ambiente

La tecnología de los productos químicos está jugando un papel esencial en la lucha contra la polución industrial y ambiental. La industria química se está convirtiendo en el "médico de la polución". Con objeto de extender ampliamente la aplicación de principios éticos entre las industrias y de proporcionar herramientas para ponerlos en práctica, la industria química en todo el mundo desarrolla un programa internacionalmente conocido como "Responsible Care" - que en España se denomina "Compromiso de Progreso" - cuyo objetivo es mejorar la seguridad e incrementar la protección de la salud y del medio ambiente. Este programa, que se inició en la industria química canadiense, se ha extendido ya a 45 países, lo que ha convertido al sector químico en el único que dispone de un programa global de estas características. Las federaciones químicas nacionales de cada uno de los países que desarrollan el programa son las encargadas de gestionarlo y coordinarlo. Cada uno de los máximos ejecutivos de las compañías que se adhieren al programa, adquiere el compromiso firmado y público de aplicar los principios éticos básicos del programa, y nombra a un coordinador que se responsabilizará del desarrollo del mismo en la empresa. Los Principios Básicos son los siguientes y mediante ellos la empresa:
Asegura que su política empresarial concuerda con la del "Compromiso de Progreso".
Se ocupa de la difusión y aplicación del "Compromiso de Progreso" en toda su organización.
Protege de manera continua el medio ambiente, la salud y la seguridad de sus empleados y de la comunidad.
Informa a las autoridades, empleados y comunidad de los riesgos potenciales y las medidas de protección necesarias.
Asesora a sus clientes respecto a sus productos en relación con la seguridad y la protección de la salud y el medio ambiente.
Utiliza de la mejor manera posible los recursos, reduciendo la producción de residuos.
Contribuye a la investigación de los efectos de sus procesos, productos y residuos.
Extiende la aplicación de buenas prácticas a los contratistas y subcontratistas.
Coopera con las autoridades en el desarrollo de buenas prácticas.
Contribuye a la promoción del "Compromiso de Progreso" entre otras empresas




No hay comentarios: